Skip to main content
Log in

Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical behavior of the anti-inflammatory drug piroxicam is studied at the surface of a plain pyrolytic graphite electrode modified with chitosan-doped carbon nanoparticles. An electroactive surface was produced by drop-casting a suspension of the modifier and characterized by atomic force microscopy. A remarkable enhancement is found in studies on the cyclic voltammetric response towards piroxicam. This is described on the basis of the thin-layer mass transport regimes within the porous films, which leads to a considerable increase in the active surface area of the electrode. The electrode shows a linear response to piroxicam in the range of 0.05–50 μM, with a detection limit of 25 nM (at S/N of 3). The electrode was successfully applied to the determination of piroxicam in pharmaceutical and clinical preparations with satisfactory accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banerjee R, Chakraborty H, Sarkar M (2003) Photophysical studies of oxicam group of NSAIDs: piroxicam, meloxicam and tenoxicam. Spectrochim Acta Part A 59:1213–1222

    Article  Google Scholar 

  2. Paulus HE, Furst DE, Dromgoole SH (1987) Drugs for rheumatic disease. Churchill Livingstone, New York, pp 389–398

    Google Scholar 

  3. Sherman KE, Jones C (1992) Hepatotoxicity associated with piroxicam use. Gastroenterology 103:354–355

    CAS  Google Scholar 

  4. Abdollahi H, Sororaddin MH, Naseri A (2006) Simultaneous spectrofluorometric determination of piroxicam and pyridoxine using generalized rank annihilation method. Anal Sci 22:263–267

    Article  CAS  Google Scholar 

  5. Amin AS (2002) Spectrophotometric determination of piroxicam and tenoxicam in pharmaceutical formulations using alizarin. J Pharm Biomed Anal 29:729–736

    Article  CAS  Google Scholar 

  6. Barary MH, Abdel-Hay MH, Sabry SM, Belal TS (2004) Spectrofluorimetric determination of 2-aminopyridine as a potential impurity in piroxicam and tenoxicam within the pharmacopoeial limit. J Pharm Biomed Anal 34:221–226

    Article  CAS  Google Scholar 

  7. Basan H, Goger NG, Ertas N, Orbey MT (2001) Quantitative determination of piroxicam in a new formulation (piroxicam-β-cyclodextrin) by derivative UV spectrophotometric method and HPLC. J Pharm Biomed Anal 26:171–178

    Article  CAS  Google Scholar 

  8. El-Ries MA, Mohamed G, Khalil S, El-Shall M (2003) Spectrophotometric and potentiometric determination of piroxicam and tenoxicam in pharmaceutical preparations. Chem Pharm Bull 51(1):6–10

    Article  CAS  Google Scholar 

  9. Escandar GM, Bystol AJ, Campiglia AD (2002) Spectrofluorimetric method for the determination of piroxicam and pyridoxine. Anal Chim Acta 466:275–283

    Article  CAS  Google Scholar 

  10. Bartsch H, Eiper A, Kopelent-Franf HJ (1999) Stability indicating assays for the determination of piroxicam-comparison of methods. J Pharm Biomed Anal 20:531–541

    Article  CAS  Google Scholar 

  11. European Pharmacopoeia Council of Europe (2004) 5th ed., Strasbourg, France

  12. Boneschans B, Wessels A, Staden JV, Zovko M, Zorc B, Bergh J (2003) Piroxicam benzoate synthesis, HPLC determination and hydrolysis. Drug Dev Ind Pharm 29:155–160

    Article  CAS  Google Scholar 

  13. Gaudiano MC, Valvo L, Bertocchi P, Manna L (2003) RP-HPLC study of the degradation of diclofenac and piroxicam in the presence of hydroxyl radicals. J Pharm Biomed Anal 32:151–158

    Article  CAS  Google Scholar 

  14. Ji HY, Lee HW, Kim YH, Jeong DW, Lee HS (2005) Simultaneous determination of piroxicam, meloxicam and tenoxicam in human plasma by liquid chromatography with tandem mass spectrometry. J Chromatogr B 826:214–219

    Article  CAS  Google Scholar 

  15. Al-Kindy SMZ, Al-Wishahi V, Suliman FEO (2004) A sequential injection method for the determination of piroxicam in pharmaceutical formulations using europium sensitized fluorescence. Talanta 64:1343–1350

    Article  CAS  Google Scholar 

  16. Chen ZL, Wu SM (2005) Capillary zone electrophoresis for simultaneous determination of seven nonsteroidal anti-inflammatory drugs in pharmaceuticals. Anal Bioanal Chem 381:907–912

    Article  CAS  Google Scholar 

  17. Acunã JA, de la Fuente C, Vázquez MD, Tascón ML, Gómez MI, Mata F, Sánchez-Batanero P (2002) Electrochemical behaviour of droxicam: kinetic study in aqueous-organic media. J Pharm Biomed Anal 29:617–624

    Article  Google Scholar 

  18. Torriero AAJ, Tonn CE, Sereno L, Raba J (2006) Electrooxidation mechanism of non-steroidal anti-inflammatory drug piroxicam at glassy carbon electrode. J Electroanal Chem 588:218–225

    Article  CAS  Google Scholar 

  19. Abbaspour A, Mirzajani R (2007) Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. J Pharm Biomed Anal 44:41–48

    Article  CAS  Google Scholar 

  20. Kauffmann JM, Vire JC, Gelbche M, Patriarche GJ (1984) Identification des produits de la reduction electrochimique d’un nouvel antiinflammatoire: le piroxicam. Anal Lett 17:2319–2331

    CAS  Google Scholar 

  21. Vire JC, Kauffmann JM, Braun J, Patriarche GJ (1985) Caractéristiques électrochimiques d’un nouvel antiinflam-matoire non-stéroidien: le piroxicam. Analusis 13:134–140

    CAS  Google Scholar 

  22. Shahrokhian S, Amiri M (2007) Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchim Acta 157:149–158

    Article  CAS  Google Scholar 

  23. Fang B, Shen R, Zhang W, Wang G, Zhang C (2009) Electrocatalytic oxidation of hydrazine at a chromium hexacyanoferrate/single-walled carbon nanotube modified glassy carbon electrode. Microchim Acta 165:231–236

    Article  CAS  Google Scholar 

  24. Zhang K, Zhang Y (2010) Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application. Microchim Acta: published online

  25. Wang C, Wang G, Fang B (2008) Electrocatalytic oxidation of bilirubin at ferrocenecarboxamide modified MWCNT—gold nanocomposite electrodes. Microchim Acta 164:113–118

    Article  Google Scholar 

  26. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sens Actuators B 133:462–466

    Article  Google Scholar 

  27. Xiao L, Wildgoose GG, Compton RG (2009) Exploring the origins of the apparent “electrocatalysis” observed at C60 film-modified electrodes. Sens Actuators B 138:524–531

    Article  Google Scholar 

  28. Takács-Novák K, Tam KY (2000) Multiwavelength spectrophotometric determination of acid dissociation constants Part V. Tautomerization microcontstants. J Pharm Biomed Anal 21:1171–1182

    Article  Google Scholar 

  29. Ghalkhani M, Shahrokhian S (2010) Application of carbon nanoparticle/chitosan modified electrode for the square-wave adsorptive anodic striping voltammetric determination of Niclosamide. Electrochem Commun 12:66–69

    Article  CAS  Google Scholar 

  30. Amiri M, Shahrokhian S, Psillakis E, Marken F (2007) Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes. Anal Chim Acta 593:117–122

    Article  CAS  Google Scholar 

  31. Shahrokhian S, Ghalkhani M (2010) Glassy carbon electrodes modified with a film of nanodiamond—graphite/chitosan: application to the highly sensitive electrochemical determination of Azathioprine. Electrochim Acta 55:3621–3627

    Article  CAS  Google Scholar 

  32. Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R (2010) Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: application to determinations in pharmaceutical and clinical preparations. J Electroanal Chem 638:212–217

    Article  CAS  Google Scholar 

  33. Granger MC, Xu J, Strojek SW, Swain GM (1999) Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography. Anal Chim Acta 397:145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Research Council and the Center of Excellence for Nanostructures of the Sharif University of Technology, Tehran, Iran. They are grateful to Professor Mehdi Jalali-Heravi for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shahrokhian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahrokhian, S., Jokar, E. & Ghalkhani, M. Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan. Microchim Acta 170, 141–146 (2010). https://doi.org/10.1007/s00604-010-0373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0373-6

Keywords

Navigation